login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364283
Number of permutations of [n] with distinct cycle lengths such that each cycle contains exactly one cycle length different from its own as an element.
3
1, 0, 0, 1, 2, 12, 60, 408, 2640, 24480, 208080, 2262960, 23950080, 307359360, 3835641600, 57400358400, 825160089600, 13909727462400, 229664981145600, 4310966499840000, 79428141112320000, 1658163790483200000, 33795850208440320000, 770528520983789568000
OFFSET
0,5
LINKS
Wikipedia, Permutation
EXAMPLE
a(3) = 1: (13)(2).
a(4) = 2: (124)(3), (142)(3).
a(5) = 12: (1235)(4), (1253)(4), (1325)(4), (1352)(4), (1523)(4), (1532)(4),
(124)(35), (142)(35), (125)(34), (152)(34), (13)(245), (13)(254).
MAPLE
f:= proc(n) option remember; `if`(n<2, 1-n, (n-1)*(f(n-1)+f(n-2))) end:
a:= proc(m) option remember; local b; b:=
proc(n, i, p) option remember; `if`(i*(i+1)/2<n, 0,
`if`(n=0, p!*f(m-p), b(n, i-1, p)+b(n-i, min(n-i, i-1), p-1)))
end: b(m$3)
end:
seq(a(n), n=0..24);
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 17 2023
STATUS
approved