login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364056
Numbers whose prime factors have high median 2. Numbers whose prime factors (with multiplicity) are mostly 2's.
4
2, 4, 8, 12, 16, 20, 24, 28, 32, 40, 44, 48, 52, 56, 64, 68, 72, 76, 80, 88, 92, 96, 104, 112, 116, 120, 124, 128, 136, 144, 148, 152, 160, 164, 168, 172, 176, 184, 188, 192, 200, 208, 212, 224, 232, 236, 240, 244, 248, 256, 264, 268, 272, 280, 284, 288, 292
OFFSET
1,1
COMMENTS
The multiset of prime factors of n is row n of A027746.
The high median (see A124944) in a multiset is either the middle part (for odd length), or the greatest of the two middle parts (for even length).
EXAMPLE
The terms together with their prime indices begin:
2: {1} 64: {1,1,1,1,1,1} 136: {1,1,1,7}
4: {1,1} 68: {1,1,7} 144: {1,1,1,1,2,2}
8: {1,1,1} 72: {1,1,1,2,2} 148: {1,1,12}
12: {1,1,2} 76: {1,1,8} 152: {1,1,1,8}
16: {1,1,1,1} 80: {1,1,1,1,3} 160: {1,1,1,1,1,3}
20: {1,1,3} 88: {1,1,1,5} 164: {1,1,13}
24: {1,1,1,2} 92: {1,1,9} 168: {1,1,1,2,4}
28: {1,1,4} 96: {1,1,1,1,1,2} 172: {1,1,14}
32: {1,1,1,1,1} 104: {1,1,1,6} 176: {1,1,1,1,5}
40: {1,1,1,3} 112: {1,1,1,1,4} 184: {1,1,1,9}
44: {1,1,5} 116: {1,1,10} 188: {1,1,15}
48: {1,1,1,1,2} 120: {1,1,1,2,3} 192: {1,1,1,1,1,1,2}
52: {1,1,6} 124: {1,1,11} 200: {1,1,1,3,3}
56: {1,1,1,4} 128: {1,1,1,1,1,1,1} 208: {1,1,1,1,6}
MATHEMATICA
prifacs[n_]:=If[n==1, {}, Flatten[ConstantArray@@@FactorInteger[n]]];
merr[y_]:=If[Length[y]==0, 0, If[OddQ[Length[y]], y[[(Length[y]+1)/2]], y[[1+Length[y]/2]]]];
Select[Range[100], merr[prifacs[#]]==2&]
CROSSREFS
Partitions of this type are counted by A027336.
Median of prime indices is A360005(n)/2.
For mode instead of median we have A360013, low A360015.
The low version is A363488, positions of 1's in A363941.
Positions of 1's in A363942.
A112798 lists prime indices, length A001222, sum A056239.
A123528/A123529 gives mean of prime factors, indices A326567/A326568.
A124943 counts partitions by low median, high A124944.
Sequence in context: A048166 A360013 A335738 * A010066 A180490 A376616
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 07 2023
STATUS
approved