OFFSET
0,7
COMMENTS
We define the weighted alternating sum of a sequence (y_1,...,y_k) to be Sum_{i=1..k} (-1)^(i-1) * i * y_i.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..150 (first 51 terms from Max Alekseyev)
EXAMPLE
The a(3) = 1 through a(10) = 14 compositions:
(21) (121) . (42) (331) (242) (63) (541)
(3111) (1132) (1331) (153) (2143)
(2221) (11132) (4122) (3232)
(21121) (12221) (5211) (4321)
(112111) (23111) (13122) (15112)
(121121) (14211) (31231)
(1112111) (411111) (42121)
(1311111) (114112)
(212122)
(213211)
(311221)
(322111)
(3111121)
(21211111)
MATHEMATICA
altwtsum[y_]:=Sum[(-1)^(k-1)*k*y[[k]], {k, 1, Length[y]}];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], altwtsum[#]==0&]], {n, 0, 10}]
CROSSREFS
A000041 counts integer partitions.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 16 2023
EXTENSIONS
Terms a(22) onward from Max Alekseyev, Sep 05 2023
STATUS
approved