login
A363626
Number of integer compositions of n with weighted alternating sum 0.
9
1, 0, 0, 1, 1, 0, 2, 5, 7, 8, 14, 38, 64, 87, 174, 373, 649, 1069, 2051, 4091, 7453, 13276, 25260, 48990, 91378, 168890, 321661, 618323, 1169126, 2203649, 4211163, 8085240, 15421171, 29390131, 56382040, 108443047, 208077560, 399310778
OFFSET
0,7
COMMENTS
We define the weighted alternating sum of a sequence (y_1,...,y_k) to be Sum_{i=1..k} (-1)^(i-1) * i * y_i.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..150 (first 51 terms from Max Alekseyev)
EXAMPLE
The a(3) = 1 through a(10) = 14 compositions:
(21) (121) . (42) (331) (242) (63) (541)
(3111) (1132) (1331) (153) (2143)
(2221) (11132) (4122) (3232)
(21121) (12221) (5211) (4321)
(112111) (23111) (13122) (15112)
(121121) (14211) (31231)
(1112111) (411111) (42121)
(1311111) (114112)
(212122)
(213211)
(311221)
(322111)
(3111121)
(21211111)
MATHEMATICA
altwtsum[y_]:=Sum[(-1)^(k-1)*k*y[[k]], {k, 1, Length[y]}];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], altwtsum[#]==0&]], {n, 0, 10}]
CROSSREFS
The unweighted version is A138364, ranks A344619.
The version for partitions is A363532, ranks A363621.
A000041 counts integer partitions.
A264034 counts partitions by weighted sum, reverse A358194.
A304818 gives weighted sum of prime indices, reverse A318283.
A316524 gives alternating sum of prime indices, reverse A344616.
A363619 gives weighted alternating sum of prime indices, reverse A363620.
A363624 gives weighted alternating sum of Heinz partition, reverse A363625.
Sequence in context: A005624 A275410 A139481 * A340326 A188341 A238364
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 16 2023
EXTENSIONS
Terms a(22) onward from Max Alekseyev, Sep 05 2023
STATUS
approved