login
A363294
G.f. A(x) satisfies: A(x) = x * exp( A(x)^2/x + A(-x^2)^2/(2*x^2) + A(x^3)^2/(3*x^3) + A(-x^4)^2/(4*x^4) + ... ).
1
1, 1, 3, 10, 37, 154, 676, 3053, 14187, 67459, 326241, 1599480, 7933272, 39736160, 200700204, 1021052197, 5227501077, 26912956631, 139244637915, 723631840568, 3775598797694, 19770494002049, 103865161431895, 547291750362216, 2891718659119578, 15317429567883000
OFFSET
1,3
MATHEMATICA
nmax = 26; A[_] = 0; Do[A[x_] = x Exp[Sum[A[-(-x)^k]^2/(k x^k), {k, 1, nmax}]] + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x] // Rest
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, May 26 2023
STATUS
approved