login
A363216
Even powerful numbers that are not prime powers.
2
36, 72, 100, 108, 144, 196, 200, 216, 288, 324, 392, 400, 432, 484, 500, 576, 648, 676, 784, 800, 864, 900, 968, 972, 1000, 1152, 1156, 1296, 1352, 1372, 1444, 1568, 1600, 1728, 1764, 1800, 1936, 1944, 2000, 2116, 2304, 2312, 2500, 2592, 2700, 2704, 2744, 2888, 2916, 3136, 3200, 3364, 3456, 3528, 3600
OFFSET
1,1
COMMENTS
This sequence is { A286708 INTERSECT A005843 } = { A001694 INTERSECT A363101 }.
Subset of A001694, A126706, and A363101.
LINKS
FORMULA
This sequence is { k = a^2*b^3 : a >= 1, b >= 1, omega(k) > 1, k mod 2 = 0 }.
Sum_{n>=1} 1/a(n) = zeta(2)*zeta(3)/(3*zeta(6)) - 1/2 = A082695 / 3 - 1/2 = 0.147865... . - Amiram Eldar, May 28 2023
EXAMPLE
a(1) = 36 = 2^2 * 3^2, the smallest even number with multiple distinct prime factors, all of which have multiplicity exceeding 1, so it is the first term.
a(2) = 72 = 2^3 * 3^2,
a(3) = 100 = 2^2 * 5^2, etc.
MATHEMATICA
With[{nn = 3600}, Select[Union@ Flatten@ Table[a^2*b^3, {b, nn^(1/3)}, {a, Sqrt[nn/b^3]}], And[EvenQ[#], ! PrimePowerQ[#]] &] ]
PROG
(PARI) isok(k) = !(k%2) && ispowerful(k) && !isprimepower(k); \\ Michel Marcus, May 27 2023
KEYWORD
nonn
AUTHOR
Michael De Vlieger, May 21 2023
STATUS
approved