login
A363009
Expansion of e.g.f. 1/(2 - exp(exp(exp(exp(exp(x) - 1) - 1) - 1) - 1)).
3
1, 1, 7, 71, 949, 15775, 313920, 7279795, 192828745, 5744627550, 190131836270, 6921735519110, 274885665920198, 11826225289547024, 547926995688877245, 27199542114163170649, 1440220170795372833970, 81026116511855753816058
OFFSET
0,3
LINKS
FORMULA
a(n) = T(n,5), T(n,k) = Sum_{j=0..n} Stirling2(n,j) * T(j,k-1), k>1, T(n,0) = n!.
MAPLE
b:= proc(n, m, t) option remember; `if`(n=0, `if`(t=1, m!,
b(m, 0, t-1)), m*b(n-1, m, t)+b(n-1, m+1, t))
end:
a:= n-> b(n, 0, 5):
seq(a(n), n=0..20); # Alois P. Heinz, May 12 2023
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(1/(2-exp(exp(exp(exp(exp(x)-1)-1)-1)-1))))
CROSSREFS
Row p=5 of A153278 (for n>=1).
Column k=5 of A363007.
Cf. A351428.
Sequence in context: A334135 A357155 A268702 * A052390 A002119 A146752
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 12 2023
STATUS
approved