OFFSET
1,1
COMMENTS
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
EXAMPLE
The terms together with their prime indices begin:
10: {1,3} 44: {1,1,5} 70: {1,3,4}
14: {1,4} 46: {1,9} 74: {1,12}
20: {1,1,3} 50: {1,3,3} 76: {1,1,8}
22: {1,5} 51: {2,7} 78: {1,2,6}
26: {1,6} 52: {1,1,6} 80: {1,1,1,1,3}
28: {1,1,4} 56: {1,1,1,4} 82: {1,13}
30: {1,2,3} 57: {2,8} 84: {1,1,2,4}
33: {2,5} 58: {1,10} 85: {3,7}
34: {1,7} 60: {1,1,2,3} 86: {1,14}
38: {1,8} 62: {1,11} 87: {2,10}
39: {2,6} 66: {1,2,5} 88: {1,1,1,5}
40: {1,1,1,3} 68: {1,1,7} 90: {1,2,2,3}
42: {1,2,4} 69: {2,9} 92: {1,1,9}
MATHEMATICA
prix[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[100], 2*Min@@prix[#]<Max@@prix[#]&]
CROSSREFS
Partitions of this type are counted by A237820.
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 14 2023
STATUS
approved