login
A362982
Heinz numbers of partitions such that 2*(least part) < greatest part.
3
10, 14, 20, 22, 26, 28, 30, 33, 34, 38, 39, 40, 42, 44, 46, 50, 51, 52, 56, 57, 58, 60, 62, 66, 68, 69, 70, 74, 76, 78, 80, 82, 84, 85, 86, 87, 88, 90, 92, 93, 94, 95, 98, 99, 100, 102, 104, 106, 110, 111, 112, 114, 115, 116, 117, 118, 120, 122, 123, 124, 126
OFFSET
1,1
COMMENTS
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
EXAMPLE
The terms together with their prime indices begin:
10: {1,3} 44: {1,1,5} 70: {1,3,4}
14: {1,4} 46: {1,9} 74: {1,12}
20: {1,1,3} 50: {1,3,3} 76: {1,1,8}
22: {1,5} 51: {2,7} 78: {1,2,6}
26: {1,6} 52: {1,1,6} 80: {1,1,1,1,3}
28: {1,1,4} 56: {1,1,1,4} 82: {1,13}
30: {1,2,3} 57: {2,8} 84: {1,1,2,4}
33: {2,5} 58: {1,10} 85: {3,7}
34: {1,7} 60: {1,1,2,3} 86: {1,14}
38: {1,8} 62: {1,11} 87: {2,10}
39: {2,6} 66: {1,2,5} 88: {1,1,1,5}
40: {1,1,1,3} 68: {1,1,7} 90: {1,2,2,3}
42: {1,2,4} 69: {2,9} 92: {1,1,9}
MATHEMATICA
prix[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[100], 2*Min@@prix[#]<Max@@prix[#]&]
CROSSREFS
For prime factors instead of indices we have A069900, complement A081306.
Prime indices are listed by A112798, length A001222, sum A056239.
Partitions of this type are counted by A237820.
The complement is A362981, counted by A237824.
Sequence in context: A073493 A162685 A272374 * A251727 A253785 A245729
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 14 2023
STATUS
approved