login
A362723
a(n) = [x^n] ( E(x)/E(-x) )^n where E(x)= exp( Sum_{k >= 1} A005259(k)*x^k/k ).
2
1, 10, 200, 7390, 260800, 10263010, 407520920, 16758685030, 697767370240, 29525605934410, 1261570539980200, 54419751094210270, 2364396136291654720, 103393259758470870770, 4545671563318715532280, 200804420082143353690390, 8907295723280072012247040, 396570344897237949249382010
OFFSET
0,2
COMMENTS
It is known that the sequence of Apéry numbers A005259 satisfies the Gauss congruences A005259(n*p^r) == A005259(n*p^(r-1)) (mod p^r) for all primes p and positive integers n and r.
One consequence is that the power series expansion of E(x) = exp( Sum_{k >= 1} A005259(k)*x^k/k ) = 1 + 5*x + 49*x^2 + 685*x^3 + 11807*x^4 + ... has integer coefficients. See A267220. For a proof see, for example, Beukers, Proposition, p 143. Therefore, the power series expansion of E(x)/E(-x) also has integer coefficients and so a(n) = [x^n] ( E(x)/E(-x) )^n is an integer.
In fact, the Apéry numbers satisfy stronger congruences than the Gauss congruences known as supercongruences: A005259(n*p^r) == A005259(n*p^(r-1)) (mod p^(3*r)) for all primes p >= 5 and positive integers n and r (see Straub, Section 1).
We conjecture below that {a(n)} satisfies supercongruences similar to (but weaker than) the above supercongruences satisfied by the Apéry numbers.
LINKS
Frits Beukers, Some congruences for the Apery numbers, Journal of Number Theory, Vol. 21, Issue 2, Oct. 1985, pp. 141-155. local copy
Armin Straub, Multivariate Apéry numbers and supercongruences of rational functions, Algebra & Number Theory, Vol. 8, No. 8 (2014), pp. 1985-2008; arXiv preprint, arXiv:1401.0854 [math.NT], 2014.
FORMULA
a(n) = [x^n] exp( Sum_{k >= 1} n*( 2*A005259(2*k+1)*x^(2*k+1) )/(2*k+1) ).
Conjectures:
1) the supercongruence a(p) == a(1) (mod p^3) holds for all primes p >= 5 (checked up to p = 101).
2) for n >= 2, a(n*p) == a(n) (mod p^2) holds for all primes p >= 5.
3) for n >= 1, r >= 2, the supercongruence a(n*p^r) == a(n*p^(r-1)) (mod p^(2*r)) holds for all primes p >= 5.
MAPLE
A005259 := proc(n) add(binomial(n, k)^2*binomial(n+k, k)^2, k = 0..n) end;
E(n, x) := series(exp(n*add(2*A005259(2*k+1)*x^(2*k+1)/(2*k+1), k = 0..10)), x, 21):
seq(coeftayl(E(n, x), x = 0, n), n = 0..20);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, May 01 2023
STATUS
approved