OFFSET
0,3
LINKS
Christian Krattenthaler and Thomas W. Müller, The congruence properties of Romik's sequence of Taylor coefficients of Jacobi's theta function theta_3, arXiv:2304.11471 [math.NT], 2023. See p. 6.
FORMULA
E.g.f.: Sum_{n>=0} a(n)*x^(2*n)/(2^n*(2*n)!) = sqrt(2F1([1/4, 1/4], [1/2], 4*x^2)).
MATHEMATICA
a[0]=1; a[n_]:=2^(n-1)Product[(4j-3)^2, {j, n}]-Sum[Binomial[2n, 2m]a[m]a[n-m], {m, n-1}]/2; Array[a, 15, 0]
nmax = 20; Table[(k-1)! * 2^((k-1)/2) * CoefficientList[Series[Sqrt[Hypergeometric2F1[1/4, 1/4, 1/2, 4*x^2]], {x, 0, 2*nmax+2}], x][[k]], {k, 1, 2*nmax+2, 2}] (* Vaclav Kotesovec, May 03 2023 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Stefano Spezia, Apr 30 2023
STATUS
approved