login
A362637
Number of partitions of [n] whose blocks are ordered with increasing least elements and where block i (except possibly the last) has size at least i.
4
1, 1, 2, 4, 10, 30, 96, 323, 1184, 4784, 20708, 93073, 431004, 2080610, 10615276, 57291063, 322921896, 1871715144, 11065738360, 66843918825, 415837464280, 2684434034706, 18010208402784, 124877499979859, 886741484322660, 6399683149311272, 46802092819866340
OFFSET
0,3
LINKS
EXAMPLE
a(0) = 1: (), the empty partition.
a(1) = 1: 1.
a(2) = 2: 12, 1|2.
a(3) = 4: 123, 12|3, 13|2, 1|23.
a(4) = 10: 1234, 123|4, 124|3, 12|34, 134|2, 13|24, 14|23, 1|234, 1|23|4, 1|24|3.
a(5) = 30: 12345, 1234|5, 1235|4, 123|45, 1245|3, 124|35, 125|34, 12|345, 12|34|5, 12|35|4, 1345|2, 134|25, 135|24, 13|245, 13|24|5, 13|25|4, 145|23, 14|235, 14|23|5, 15|234, 1|2345, 1|234|5, 15|23|4, 1|235|4, 1|23|45, 14|25|3, 15|24|3, 1|245|3, 1|24|35, 1|25|34.
MAPLE
b:= proc(n, t) option remember; `if`(n=0, 1, `if`(n<=t, 1,
add(b(n-j, t+1)*binomial(n-1, j-1), j=t..n)))
end:
a:= n-> b(n, 1):
seq(a(n), n=0..30);
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Apr 28 2023
STATUS
approved