OFFSET
0,9
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f. A_k(x) of column k satisfies A_k(x) = exp(x + k*x^2/2 * A_k(x)^2).
A_k(x) = exp(x - LambertW(-k*x^2 * exp(2*x))/2).
A_k(x) = sqrt( -LambertW(-k*x^2 * exp(2*x))/(k*x^2) ) for k > 0.
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, ...
1, 10, 19, 28, 37, 46, ...
1, 70, 169, 298, 457, 646, ...
1, 646, 2041, 4186, 7081, 10726, ...
PROG
(PARI) T(n, k) = n! * sum(j=0, n\2, (k/2)^j*(2*j+1)^(n-j-1)/(j!*(n-2*j)!));
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Apr 21 2023
STATUS
approved