login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362356
a(n) = 5*(n + 5)^(n-1).
1
1, 5, 35, 320, 3645, 50000, 805255, 14929920, 313742585, 7378945280, 192216796875, 5497558138880, 171359481538165, 5784156907130880, 210264917311285295, 8192000000000000000, 340611592914758411505, 15056807481695325716480, 705250197803314844630515
OFFSET
0,2
COMMENTS
This gives the fifth exponential (also called binomial) convolution of {A000272(n+1)} = {A232006(n+1, 1)}, for n >= 0, with e.g.f. (LambertW(-x),(-x)) (LambertW is the principal branch of the Lambert W-function).
This is also the row polynomial P(n, x) of the unsigned triangle A137452, evaluated at x = 5.
LINKS
Eric Weisstein's World of Mathematics, Lambert W-function
FORMULA
a(n) = Sum_{k=0..n} |A137452(n, k)|*5^k = Sum_{k=0..n} binomial(n-1, k-1)*n^(n-k)*5^k, with the n = 0 term equal to 1 (not 0)).
E.g.f.: (LambertW(-x)/(-x))^5.
CROSSREFS
Column k=5 of A232006.
Sequence in context: A124564 A260952 A349515 * A307679 A305306 A113342
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Apr 24 2023
STATUS
approved