login
A362306
a(n) is the least squarefree semiprime > a(n-1) and coprime to a(n-1), with a(1) = 6.
1
6, 35, 38, 39, 46, 51, 55, 57, 58, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 106, 111, 115, 118, 119, 122, 123, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 177, 178, 183, 185, 187, 194, 201, 202, 203, 205, 206, 209, 213, 214, 215, 217, 218, 219, 221, 226, 235, 237, 247, 249
OFFSET
1,1
LINKS
EXAMPLE
a(2) = 35 because 35 = 5*7 is the least squarefree semiprime greater than and coprime to a(1) = 6.
MAPLE
A[1]:= 6: t:= 6: count:= 1:
for x from 7 while count < 100 do
if igcd(x, t) = 1 then
F:= ifactors(x)[2];
if nops(F) = 2 and F[.., 2] = [1, 1] then
count:= count+1;
A[count]:= x;
t:= x;
fi
fi
od:
seq(A[i], i=1..100);
MATHEMATICA
s={m1=6}; Do[If[ 2 == PrimeOmega[m] && SquareFreeQ[m] && CoprimeQ[m1, m], AppendTo[s, m1 = m]], {m, 7, 1000}]; s
lss[n_]:=Module[{k=n+1}, While[!SquareFreeQ[k]||PrimeOmega[k]!=2||!CoprimeQ[n, k], k++]; k]; NestList[lss, 6, 70] (* Harvey P. Dale, Dec 27 2023 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Zak Seidov and Robert Israel, Apr 17 2023
STATUS
approved