login
A362057
Number of compositions of n that are anti-palindromic modulo 3.
1
1, 1, 1, 3, 5, 7, 15, 27, 43, 81, 147, 249, 449, 809, 1409, 2507, 4485, 7903, 14015, 24963, 44187, 78329, 139203, 246801, 437601, 776881, 1378081, 2444083, 4337125, 7694487, 13648655, 24215947, 42962283, 76213761, 135212947, 239883849, 425562849, 754987929
OFFSET
0,4
COMMENTS
A composition (c(1), c(2), ..., c(k)) is anti-palindromic modulo 3 if c(i) and c(k+1-i) are not congruent modulo 3 whenever 1 <= i <= k/2.
LINKS
Jia Huang, Partially Palindromic Compositions, Journal of Integer Sequences, Vol. 26 (2023), Article 23.4.1.
FORMULA
a(n) = Sum_{3*i + j + 2*r + 2*s + 3*d = n} (-1)^r * 2^i * binomial(i+j,j) * binomial(i,r) * binomial(i+s-1,s) * binomial(i+d-1,d).
G.f.: (1 - x^3)/(1 - x - 3*x^3 + x^4).
EXAMPLE
There are a(5) = 7 compositions of n = 5 that are anti-palindromic modulo 3: 5, 32, 23, 311, 113, 221, 122. Note that 41 and 14 are anti-palindromic but not anti-palindromic modulo 3.
PROG
(PARI) a(n) = {sum(i=0, n\3, sum(d=0, (n-3*i)\3, sum(s=0, (n-3*i-3*d)\2, 2^i * binomial(i+s-1, s) * binomial(i+d-1, d) * sum(r=0, (n-3*i-3*d-2*s)\2, my(j=n-3*i-3*d-2*s-2*r); (-1)^r * binomial(i+j, j) * binomial(i, r) ))))} \\ Andrew Howroyd, Apr 10 2023
(PARI) Vec((1 - x^3)/(1 - x - 3*x^3 + x^4) + O(x^41)) \\ Andrew Howroyd, Apr 11 2023
(PARI) my(p=Mod('x, 'x^4-'x^3-3*'x+1)); a(n) = vecsum(Vec(lift(p^(n+1)))); \\ Kevin Ryde, Apr 12 2023
CROSSREFS
Cf. A000213 (anti-palindromic compositions), A362055.
Sequence in context: A061950 A166093 A165785 * A261646 A303027 A217615
KEYWORD
nonn,easy
AUTHOR
Jia Huang, Apr 06 2023
STATUS
approved