login
A362019
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = (-1)^n * Sum_{j=0..n} (-k*j)^j * binomial(n,j).
5
1, 1, -1, 1, 0, 1, 1, 1, 3, -1, 1, 2, 13, 17, 1, 1, 3, 31, 173, 169, -1, 1, 4, 57, 629, 3321, 2079, 1, 1, 5, 91, 1547, 18025, 81529, 31261, -1, 1, 6, 133, 3089, 58993, 662639, 2443333, 554483, 1, 1, 7, 183, 5417, 147081, 2888979, 29752957, 86475493, 11336753, -1
OFFSET
0,9
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f. of column k: exp(-x) / (1 + LambertW(-k*x)).
G.f. of column k: Sum_{j>=0} (k*j*x)^j / (1 + x)^(j+1).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
-1, 0, 1, 2, 3, 4, ...
1, 3, 13, 31, 57, 91, ...
-1, 17, 173, 629, 1547, 3089, ...
1, 169, 3321, 18025, 58993, 147081, ...
-1, 2079, 81529, 662639, 2888979, 8998399, ...
PROG
(PARI) T(n, k) = (-1)^n*sum(j=0, n, (-k*j)^j*binomial(n, j));
CROSSREFS
Columns k=0..3 give A033999, (-1)^n * A069856(n), A362859, A362860.
Main diagonal gives A362862.
Cf. A362856.
Sequence in context: A200702 A331599 A328901 * A016564 A104443 A218489
KEYWORD
sign,tabl
AUTHOR
Seiichi Manyama, May 05 2023
STATUS
approved