login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Leading terms of the rows of the array in A362450; or, Gilbreath transform of tau (A000005).
8

%I #64 Sep 27 2023 15:02:58

%S 1,1,1,0,1,1,1,0,0,0,0,1,0,0,0,0,1,1,1,0,1,1,1,0,1,1,1,0,1,1,1,1,1,1,

%T 1,1,1,1,1,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,

%U 1,1,1,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,0,0,0,1,1,1,0,1,1,1,0,0

%N Leading terms of the rows of the array in A362450; or, Gilbreath transform of tau (A000005).

%C Conjecture: All terms are either 0 or 1. Verified to a(10^7).

%C Inspired by Gilbreath's conjecture, A036262.

%C Using the terminology of A362451, this is the Gilbreath transform of tau (A000005). - _N. J. A. Sloane_, May 05 2023

%H N. J. A. Sloane, <a href="/A361897/b361897.txt">Table of n, a(n) for n = 1..10000</a>

%H N. J. A. Sloane, New Gilbreath Conjectures, Sum and Erase, Dissecting Polygons, and Other New Sequences, Doron Zeilberger's Exper. Math. Seminar, Rutgers, Sep 14 2023: <a href="https://vimeo.com/866583736?share=copy">Video</a>, <a href="http://neilsloane.com/doc/EMSep2023.pdf">Slides</a>, <a href="http://neilsloane.com/doc/EMSep2023.Updates.txt">Updates</a>. (Mentions this sequence.)

%H <a href="/index/Ge#Gilbreath">Index entries for sequences related to Gilbreath conjecture and transform</a>

%e Table begins (conjecture is leading terms are 0 or 1):

%e 1 2 2 3 2 4 2 4 3 4 2 6 2 4 4 5 2 6 2 6 4 4 2 8 3 4 4 6 2 8 2 6 4 4 4 9 2 4 4 ...

%e 1 0 1 1 2 2 2 1 1 2 4 4 2 0 1 3 4 4 4 2 0 2 6 5 1 0 2 4 6 6 4 2 0 0 5 7 2 0 ...

%e 1 1 0 1 0 0 1 0 1 2 0 2 2 1 2 1 0 0 2 2 2 4 1 4 1 2 2 2 0 2 2 2 0 5 2 5 2 4 ...

%e 0 1 1 1 0 1 1 1 1 2 2 0 1 1 1 1 0 2 0 0 2 3 3 3 1 0 0 2 2 0 0 2 5 3 3 3 2 ...

%e 1 0 0 1 1 0 0 0 1 0 2 1 0 0 0 1 2 2 0 2 1 0 0 2 1 0 2 0 2 0 2 3 2 0 0 1 0 ...

%e 1 0 1 0 1 0 0 1 1 2 1 1 0 0 1 1 0 2 2 1 1 0 2 1 1 2 2 2 2 2 1 1 2 0 1 1 ...

%e 1 1 1 1 1 0 1 0 1 1 0 1 0 1 0 1 2 0 1 0 1 2 1 0 1 0 0 0 0 1 0 1 2 1 0 1 ...

%e 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 ...

%e 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 ...

%e 0 0 1 1 0 0 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 ...

%e 0 1 0 1 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 1 1 0 1 0 0 0 0 0 1 ...

%e 1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 0 1 1 1 0 0 0 0 1 ...

%e etc.

%e ...

%e The first two rows are A000005, abs(A051950). The full table, read by antidiagonals, is A362450.

%p N:= 200: # for a(1) to a(N)

%p L:= [seq(numtheory:-tau(n),n=1..N)]:

%p for i from 1 to 105 do

%p R[i]:= L[1];

%p L:= map(abs,L[2..-1]-L[1..-2])

%p od:

%p seq(R[i],i=1..M); # _Robert Israel_, May 07 2023

%t a[n_] := NestWhile[ Abs@ Differences@ # &, Table[ DivisorSigma[0, m], {m, n}], Length[##] > 1 &][[1]]; Array[a, 105]

%t (* or *)

%t mx = 105; lst = {}; k = 0; d = Array[ DivisorSigma[0, #] &, mx]; While[k < mx, AppendTo[lst, d[[1]]]; d = Abs@ Differences@ d; k++]; lst

%t (* or *)

%t A361897[nmax_]:=Module[{d=DivisorSigma[0,Range[nmax]]},Join[{1},Table[First[d=Abs[Differences[d]]],nmax-1]]];A361897[200] (* _Paolo Xausa_, May 07 2023 *)

%o (PARI) lista(nn) = my(v=apply(numdiv, [1..nn]), list = List(), nb=nn); listput(list, v[1]); for (n=2, nn, nb--; my(w = vector(nb, k, abs(v[k+1]-v[k]))); listput(list, w[1]); v = w;); Vec(list);

%o lista(200) \\ _Michel Marcus_, Mar 29 2023

%Y Cf. A000005, A036262, A051950, A362450, A362451, A362452, A362453 (0's), A362454 (1's).

%Y See also A001659 (if don't use absolute values).

%K easy,nonn

%O 1,1

%A Wayman Eduardo Luy and _Robert G. Wilson v_, Mar 28 2023

%E Edited by _N. J. A. Sloane_, Apr 30 2023