Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Mar 30 2023 05:16:27
%S 1,3,30,300,3165,34584,386880,4400928,50692266,589584042,6910397886,
%T 81507086634,966408021984,11509174498254,137584249375308,
%U 1650109151463594,19847075122106145,239316542492974317,2892135259684291248,35021199836282568456,424837125616822551264
%N Expansion of 1/(1 - 9*x/(1 - x)^4)^(1/3).
%H Winston de Greef, <a href="/A361896/b361896.txt">Table of n, a(n) for n = 0..907</a>
%F a(n) = Sum_{k=0..n} (-9)^k * binomial(-1/3,k) * binomial(n+3*k-1,n-k).
%F a(0) = 1; a(n) = (3/n) * Sum_{k=0..n-1} (n+2*k) * binomial(n+2-k,3) * a(k).
%o (PARI) my(N=30, x='x+O('x^N)); Vec(1/(1-9*x/(1-x)^4)^(1/3))
%Y Cf. A004987, A361375, A361843, A361844, A361845, A361880, A361895.
%K nonn
%O 0,2
%A _Seiichi Manyama_, Mar 28 2023