login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361872
Number of primitive practical numbers (PPNs)(A267124) between successive primorial numbers (A002110) where the PPNs q are in the range A002110(n-1) < q <= A002110(n).
1
1, 1, 3, 8, 108, 1107, 15788, 252603, 5121763
OFFSET
1,3
COMMENTS
The sequence of primorial numbers is a subset of the sequence of PPNs. Note that the sequence A002110 has an offset of 0 and A002110(0) = 1.
EXAMPLE
a(4) = 8, because between successive primorials 30 and 210 (that includes 210) is the sequence {42, 66, 78, 88, 104, 140, 204, 210} of PPNs. It contains 8 members.
MATHEMATICA
f[p_, e_] := (p^(e + 1) - 1)/(p - 1);
pracQ[fct_] := (ind=Position[fct[[;; , 1]]/(1+FoldList[Times, 1, f @@@ Most@fct]), _?(# > 1 &)])=={};
pracTestQ[fct_, k_] := Module[{f=fct}, f[[k, 2]]-= 1; pracQ[f]];
primPracQ[n_] := Module[{fct=FactorInteger[n]}, pracQ[fct]&&AllTrue[Range@Length[fct], fct[[#, 2]]==1||!pracTestQ[fct, #] &]];
pri[n_] := Module[{m}, If[n==1, 1, Product[Prime[m], {m, 1, n-1}]]];
plst=Join[{1}, Select[Range[2, 10^9, 2], primPracQ]]; pasc=<||>;
Do[AppendTo[pasc, <|plst[[n]]->n|>], {n, 1, Length@plst}]; Table[pasc[pri[n+1]]-pasc[pri[n]], {n, 1, 9}]
PROG
(PARI)
f(n) = factorback(primes(n)); \\ A002110
a(n) = sum(k=f(n-1)+1, f(n), is_A267124(k)); \\ Michel Marcus, Mar 28 2023
CROSSREFS
Sequence in context: A349561 A231389 A123279 * A279164 A134803 A030063
KEYWORD
nonn,more
AUTHOR
Frank M Jackson, Mar 27 2023
STATUS
approved