login
A361417
a(n) is the least integer z for which there is a triple (x,y,z) satisfying x^3 + n*x*y + y^3 = z^3 and 0 < x < y < z.
1
105, 55, 26, 54, 44, 20, 147, 35, 3, 16, 24, 4, 165, 294, 5, 70, 22, 6, 51, 32, 7, 48, 16, 8, 220, 29, 9, 378, 24, 10, 62, 140, 11, 44, 308, 12, 45, 43, 13, 42, 175, 14, 528, 96, 15, 32, 25, 16, 181, 31, 17, 58, 40, 18, 8, 245, 19, 5, 115, 20, 65, 124, 21, 90
OFFSET
1,1
COMMENTS
I have verified that for all integers n <= 10000, there always exist triples (x,y,z) of positive integers such that x^3 + n*x*y + y^3 = z^3.
For example: n=4459, (2835, 14700, 15015) is a solution.
EXAMPLE
a(3)=26 because there exists a triple (14,24,26) satisfying 14^3 + 3*14*24 + 24^3 = 26^3, and no smaller solution exists.
MATHEMATICA
Table[First[
Sort@Flatten[
Table[CubeRoot[x^3 + n*x*y + y^3], {x, 1, 400}, {y, x + 1, 400}]],
IntegerQ[#] &], {n, 1, 30}]
PROG
(Python)
def a(n):
r=400
for x in range(1, 400):
for y in range(x+1, 400):
zz=x**3+n*x*y+y**3
z=round(zz**(1/3))
if zz==z**3 and z<r:
r=z
return(r)
print([a(n) for n in range(1, 31)])
CROSSREFS
Cf. A361416.
Sequence in context: A069172 A231578 A104437 * A112814 A058179 A260461
KEYWORD
nonn
AUTHOR
Zhining Yang, Mar 11 2023
EXTENSIONS
More terms from Sean A. Irvine, Apr 10 2023
STATUS
approved