login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361375
Expansion of 1/(1 - 9*x/(1 - x))^(1/3).
10
1, 3, 21, 165, 1380, 11982, 106626, 965442, 8854725, 82022115, 765787773, 7195638909, 67973370618, 644991134880, 6143707229880, 58714212503784, 562741793028282, 5407273475087934, 52074626299010130, 502513862912425650, 4857975310180620720
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} (-9)^k * binomial(-1/3,k) * binomial(n-1,n-k).
a(0) = 1; a(n) = (3/n) * Sum_{k=0..n-1} (n+2*k) * a(k).
n*a(n) = (11*n-8)*a(n-1) - 10*(n-2)*a(n-2) for n > 1.
a(n) ~ 3^(2/3) * 10^(n - 1/3) / (Gamma(1/3) * n^(2/3)). - Vaclav Kotesovec, Mar 28 2023
a(n) = 3*hypergeom([1 - n, 4/3], [2], -9) for n >= 1. - Peter Luschny, Mar 30 2023
MAPLE
a := n -> if n = 0 then 1 else 3*hypergeom([1 - n, 4/3], [2], -9) fi:
seq(simplify(a(n)), n = 0..20); # Peter Luschny, Mar 30 2023
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(1/(1-9*x/(1-x))^(1/3))
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 28 2023
STATUS
approved