login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361283
Expansion of e.g.f. exp(x/(1-x)^4).
4
1, 1, 9, 85, 961, 13041, 207001, 3746149, 75832065, 1693615681, 41302616041, 1090835399061, 30988423000129, 941461990360945, 30439632977968761, 1042973073239321701, 37731609890300935681, 1436586994020158747649
OFFSET
0,3
LINKS
FORMULA
a(n) = n! * Sum_{k=0..n} (-1)^(n-k) * binomial(-4*k,n-k)/k! = n! * Sum_{k=0..n} binomial(n+3*k-1,n-k)/k!.
a(0) = 1; a(n) = (n-1)! * Sum_{k=1..n} (-1)^(k-1) * k * binomial(-4,k-1) * a(n-k)/(n-k)!.
D-finite with recurrence a(n) +(-5*n+4)*a(n-1) +(n-1)*(10*n-23)*a(n-2) -10*(n-1)*(n-2)*(n-3)*a(n-3) +5*(n-1)*(n-2)*(n-3)*(n-4)*a(n-4) -(n-5)*(n-1)*(n-2)*(n-3)*(n-4)*a(n-5)=0. - R. J. Mathar, Mar 12 2023
a(n) ~ 2^(1/5) * n^(n - 1/10) * exp(-27/1280 - 13*2^(3/5)*n^(1/5)/800 + 13*2^(1/5)*n^(2/5)/240 + 2^(-6/5)*n^(3/5) + 5*2^(-8/5)*n^(4/5) - n) / sqrt(5) * (1 + 116303*2^(12/5)/(3200000*n^(1/5))). - Vaclav Kotesovec, Nov 11 2023
MAPLE
A361283 := proc(n)
n!*add(binomial(n+3*k-1, n-k)/k!, k=0..n) ;
end proc:
seq(A361283(n), n=0..40) ; # R. J. Mathar, Mar 12 2023
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x/(1-x)^4)))
(PARI) a(n) = n!*sum(k=0, n, (-1)^(n-k)*binomial(-4*k, n-k)/k!);
(PARI) a(n) = n!*sum(k=0, n, binomial(n+3*k-1, n-k)/k!);
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=1, i, (-1)^(j-1)*j*binomial(-4, j-1)*v[i-j+1]/(i-j)!)); v;
CROSSREFS
Column k=4 of A293012.
Cf. A361280.
Sequence in context: A142982 A218136 A196955 * A029711 A204465 A276242
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 06 2023
STATUS
approved