login
E.g.f. satisfies A(x) = exp( x/(1 - x/A(x)^2) ).
4

%I #12 Mar 14 2023 13:42:56

%S 1,1,3,1,-71,-19,10051,12349,-3185391,-9346247,1797304771,9717361721,

%T -1582301193527,-13722004186331,2000705907453891,25552516703201461,

%U -3432004488804778079,-60960914621687232271,7660860906885122096515

%N E.g.f. satisfies A(x) = exp( x/(1 - x/A(x)^2) ).

%H Winston de Greef, <a href="/A361091/b361091.txt">Table of n, a(n) for n = 0..380</a>

%F a(n) = n! * Sum_{k=0..n} (-2*n+2*k+1)^(k-1) * binomial(n-1,n-k)/k!.

%o (PARI) a(n) = n!*sum(k=0, n, (-2*n+2*k+1)^(k-1)*binomial(n-1, n-k)/k!);

%Y Cf. A161630, A212722, A212917, A361090, A361092.

%Y Cf. A361068, A361096.

%K sign

%O 0,3

%A _Seiichi Manyama_, Mar 01 2023