login
A360891
G.f. satisfies A(x) = 1 + x/(1 - x^4) * A(x/(1 - x^4)).
3
1, 1, 1, 1, 1, 2, 4, 7, 11, 17, 32, 66, 132, 247, 463, 937, 2001, 4248, 8758, 18166, 39181, 87096, 193493, 425468, 942610, 2137196, 4930702, 11393809, 26280211, 61089849, 144157779, 343855549, 822430473, 1970839418, 4757600242, 11605042346, 28516751351
OFFSET
0,6
FORMULA
a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/4)} binomial(n-1-3*k,k) * a(n-1-4*k).
PROG
(PARI) a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=sum(j=0, (i-1)\4, binomial(i-1-3*j, j)*v[i-4*j])); v;
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 25 2023
STATUS
approved