login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

4-full numbers (A036967) sandwiched between twin primes.
4

%I #14 Feb 27 2023 05:27:36

%S 2592,139968,995328,37340352,63700992,99574272,169869312,414720000,

%T 1399680000,4076863488,10871635968,17714700000,22781250000,

%U 25312500000,35888419872,51840000000,82012500000,98802571392,135304020000,136136700000,170749797552,174960000000,196730062848

%N 4-full numbers (A036967) sandwiched between twin primes.

%H Amiram Eldar, <a href="/A360841/b360841.txt">Table of n, a(n) for n = 1..1520</a> (terms below 3*10^19)

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/TwinPrimes.html">Twin Primes</a>.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Powerful_number#Generalization">Powerful number: Generalization</a>.

%H <a href="/index/Pow#powerful">Index entries for sequences related to powerful numbers</a>.

%e 2592 = 2^5 * 3^4 is a term since it is 4-full and 2591 and 2593 are twin primes.

%t Select[6*Range[2*10^5], PrimeQ[# - 1] && PrimeQ[# + 1] && Min[FactorInteger[#][[;; , 2]]] > 3 &]

%o (PARI) is(n) = isprime(n-1) && isprime(n+1) && vecmin(factor(n)[,2]) > 3;

%Y Intersection of A014574 and A036967.

%Y Subsequence of A113839 and A360840.

%K nonn

%O 1,1

%A _Amiram Eldar_, Feb 23 2023