login
A360721
a(n) is the number of infinitary divisors of n that are powerful (A001694).
5
1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 2, 1, 3, 2, 1, 1, 1, 3, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1
OFFSET
1,4
FORMULA
Multiplicative with a(p^e) = 2^A000120(e) - (e mod 2).
a(n) <= A037445(n) with equality if and only if n is a square.
a(n) <= A005361(n) with equality if and only if n is not in A360723.
Sum_{k=1..n} a(k) a(k) ~ c * n, where c = Product_{p prime} ((1-1/p) * Sum_{k>=1} ((2^A000120(k)- k mod 2)/p^k)) = 1.72717... .
MATHEMATICA
f[p_, e_] := 2^DigitCount[e, 2, 1] - Mod[e, 2]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
PROG
(PARI) a(n) = {my(f = factor(n)); prod(i = 1, #f~, 2^hammingweight(f[i, 2]) - f[i, 2]%2); }
CROSSREFS
Similar sequences: A005361 (number of powerful divisors), A323308 (number of unitary powerful divisors).
Sequence in context: A375766 A375768 A072909 * A365552 A095691 A375428
KEYWORD
nonn,mult,easy
AUTHOR
Amiram Eldar, Feb 18 2023
STATUS
approved