login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360684
Expansion of Sum_{k>=0} (x * (1 + k^2 * x))^k.
1
1, 1, 2, 9, 44, 308, 2391, 22851, 241570, 2937179, 39192998, 579482352, 9328260061, 162563246381, 3062996934322, 61499850730949, 1327236820161040, 30176760155713420, 733829463528115523, 18639130961053854975, 504241689606231891890
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..floor(n/2)} (n-k)^(2*k) * binomial(n-k,k).
a(n) ~ (exp(exp(1)) + (-1)^n * exp(-exp(1))) * n^n / 2^(n+1). - Vaclav Kotesovec, Feb 16 2023
MATHEMATICA
Flatten[{1, Table[Sum[Binomial[n-k, k] * (n-k)^(2*k), {k, 0, n}], {n, 1, 30}]}] (* Vaclav Kotesovec, Feb 16 2023 *)
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(sum(k=0, N, (x*(1+k^2*x))^k))
(PARI) a(n) = sum(k=0, n\2, (n-k)^(2*k)*binomial(n-k, k));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 16 2023
STATUS
approved