login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360660
Number of inequivalent n X n {0,1} matrices modulo permutation of the rows, with exactly n 1's.
3
1, 1, 4, 20, 133, 1027, 9259, 94033, 1062814, 13176444, 177427145, 2573224238, 39924120823, 658921572675, 11513293227271, 212109149134617, 4105637511110979, 83238756058333277, 1762856698153603049, 38905470655863251479, 892840913430059075405
OFFSET
0,3
COMMENTS
Also the number of multisets of n words of length n over binary alphabet where the first letter occurs n times. a(2) = 4: {aa,bb}, {ab,ab}, {ab,ba}, {ba,ba}.
LINKS
FORMULA
a(n) = A220886(n,n).
EXAMPLE
a(3) = 20: [111/000/000], [110/100/000], [110/010/000], [110/001/000], [101/100/000], [101/010/000], [101/001/000], [100/100/100], [100/100/010], [100/100/001], [100/011/000], [100/010/010], [100/010/001], [100/001/001], [011/010/000], [011/001/000], [010/010/010], [010/010/001], [010/001/001], [001/001/001].
MAPLE
g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add(
g(n, i-1, j-k)*x^(i*k)*binomial(binomial(n, i)+k-1, k), k=0..j))))
end:
a:= n-> coeff(g(n$3), x, n):
seq(a(n), n=0..20);
MATHEMATICA
g[n_, i_, j_] := g[n, i, j] = Expand[If[j == 0, 1, If[i < 0, 0, Sum[g[n, i - 1, j - k]*x^(i*k)*Binomial[Binomial[n, i] + k - 1, k], {k, 0, j}]]]];
a[n_] := SeriesCoefficient[g[n, n, n], {x, 0, n}];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 28 2023, after Alois P. Heinz *)
CROSSREFS
Main diagonal of A220886.
Sequence in context: A251179 A201355 A292468 * A143463 A290444 A270665
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Feb 15 2023
STATUS
approved