login
A360491
Square of A(n,m) read by antidiagonals. A(n,m) = number of set partitions of [5n] into 5-element subsets {i, i+k, i+2k, i+3k, i+4k} with 1 <= k <= m.
3
1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 4, 5, 1, 1, 2, 4, 7, 8, 1, 1, 2, 4, 10, 13, 13, 1, 1, 2, 4, 10, 19, 24, 21, 1, 1, 2, 4, 10, 20, 41, 44, 34, 1, 1, 2, 4, 10, 21, 43, 84, 81, 55, 1, 1, 2, 4, 10, 21, 58, 89, 180, 149, 89, 1, 1, 2, 4, 10, 21, 59, 120, 192, 372, 274, 144, 1
OFFSET
1,5
FORMULA
A(n,m) = A104431(n) = A104443(n,5) for m >= floor((5n - 1) / 4).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 2, 2, 2, 2, 2, 2, 2, ...
1, 3, 4, 4, 4, 4, 4, 4, 4, ...
1, 5, 7, 10, 10, 10, 10, 10, 10, ...
1, 8, 13, 19, 20, 21, 21, 21, 21, ...
1, 13, 24, 41, 43, 58, 59, 59, 59, ...
1, 21, 44, 84, 89, 120, 124, 125, 125, ...
1, 34, 81, 180, 192, 280, 289, 344, 349, ...
1, 55, 149, 372, 404, 626, 648, 759, 811, ...
1, 89, 274, 785, 860, 1454, 1510, 1877, 1996, ...
1, 144, 504, 1637, 1816, 3272, 3414, 4263, 4565, ...
...
CROSSREFS
Main diagonal is A349430.
Columns 1..3 are A000012, A000045(n+1), A000073(n+2).
Sequence in context: A048887 A360493 A360492 * A360333 A047913 A152977
KEYWORD
nonn,tabl
AUTHOR
Peter Dolland, Feb 09 2023
STATUS
approved