Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Mar 11 2023 08:42:31
%S 1,2,2,2,3,3,2,4,5,0,4,13,-7,-7,48,-16,-93,180,74,-584,517,1111,-2850,
%T 207,8281,-10738,-11740,46967,-22167,-115845,211052,94468,-766989,
%U 660110,1554938,-3983408,121429,12272689,-15692006,-18841086,72792247,-31828764
%N a(n) = Sum_{k=0..n} (-1)^k * binomial(n+2*k+2,n-k) * Catalan(k).
%F a(n) = binomial(n+2,2) - Sum_{k=0..n-1} a(k) * a(n-k-1).
%F G.f. A(x) satisfies A(x) = 1/(1-x)^3 - x * A(x)^2.
%F G.f.: 2 / ( (1-x)^3 * (1 + sqrt( 1 + 4*x/(1-x)^3 )) ).
%F D-finite with recurrence (n+1)*a(n) -2*a(n-1) +2*(n-3)*a(n-2) +4*(-n+2)*a(n-3) +(n-3)*a(n-4)=0. - _R. J. Mathar_, Jan 25 2023
%o (PARI) a(n) = sum(k=0, n, (-1)^k*binomial(n+2*k+2, n-k)*binomial(2*k, k)/(k+1));
%o (PARI) my(N=50, x='x+O('x^N)); Vec(2/((1-x)^3*(1+sqrt(1+4*x/(1-x)^3))))
%Y Cf. A360059, A360060.
%Y Cf. A000108, A162481, A360049.
%K sign
%O 0,2
%A _Seiichi Manyama_, Jan 23 2023