login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359791
Dirichlet inverse of function f(n) = 1 + A349905(n), where A349905(n) is the arithmetic derivative of prime shifted n.
7
1, -2, -2, -3, -2, -1, -2, -8, -7, -3, -2, 0, -2, -7, -5, -16, -2, 0, -2, -4, -9, -9, -2, 23, -11, -13, -40, -12, -2, 12, -2, -16, -11, -15, -11, 42, -2, -19, -15, 21, -2, 12, -2, -16, -24, -25, -2, 128, -19, -12, -17, -24, -2, 67, -13, 17, -21, -27, -2, 105, -2, -33, -48, 48, -17, 12, -2, -28, -27, 0, -2, 224
OFFSET
1,2
FORMULA
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} (1+A349905(n/d)) * a(d).
a(n) = A359790(A003961(n)).
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
A003961(n) = { my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
memoA359791 = Map();
A359791(n) = if(1==n, 1, my(v); if(mapisdefined(memoA359791, n, &v), v, v = -sumdiv(n, d, if(d<n, (1+A349905(n/d))*A359791(d), 0)); mapput(memoA359791, n, v); (v)));
CROSSREFS
Cf. A359764 (parity of terms), A359765 (positions of odd terms), A359766 (of even terms).
Cf. also A359169.
Sequence in context: A116199 A369031 A162915 * A242266 A239617 A304737
KEYWORD
sign
AUTHOR
Antti Karttunen, Jan 13 2023
STATUS
approved