login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359788
Dirichlet inverse of A075255, where A075255(n) = n - sopfr(n), where sopfr is the sum of prime factors (with repetition).
3
1, 0, 0, 0, 0, -1, 0, -2, -3, -3, 0, -5, 0, -5, -7, -8, 0, -10, 0, -11, -11, -9, 0, -15, -15, -11, -18, -17, 0, -20, 0, -22, -19, -15, -23, -25, 0, -17, -23, -29, 0, -30, 0, -29, -34, -21, 0, -33, -35, -38, -31, -35, 0, -37, -39, -43, -35, -27, 0, -42, 0, -29, -50, -48, -47, -50, 0, -47, -43, -56, 0, -38, 0, -35
OFFSET
1,8
COMMENTS
The first positive term after a(1) occurs as a(144) = 13.
LINKS
FORMULA
a(1) = 1, and for n > 1, a(n) = -Sum_{d|n, d<n} A075255(n/d) * a(d).
PROG
(PARI)
A001414(n) = ((n=factor(n))[, 1]~*n[, 2]); \\ From A001414.
A075255(n) = (n-A001414(n));
memoA359788 = Map();
A359788(n) = if(1==n, 1, my(v); if(mapisdefined(memoA359788, n, &v), v, v = -sumdiv(n, d, if(d<n, A075255(n/d)*A359788(d), 0)); mapput(memoA359788, n, v); (v)));
CROSSREFS
Cf. A001414, A075255, A359787 (parity of terms).
Cf. also A359789.
Sequence in context: A127572 A021815 A238525 * A075255 A135498 A104172
KEYWORD
sign
AUTHOR
Antti Karttunen, Jan 15 2023
STATUS
approved