login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359761
a(n) = binomial(4*n, 2*n)*(2*n)!/(2^n*n!).
1
1, 6, 210, 13860, 1351350, 174594420, 28109701620, 5421156741000, 1218404977539750, 312723944235202500, 90252130306279441500, 28929910132721937339000, 10197793321784482911997500, 3920659309406065045704885000, 1632674555274097086889962825000, 732091270584905133761459330730000
OFFSET
0,2
FORMULA
a(n) = (2^(3*n)*Gamma(2*n + 1/2))/(sqrt(Pi)*Gamma(n + 1)).
a(n) = A359760(4*n, 2*n), the central terms of the triangle without the zeros.
a(n) = A001448(n)*A001147(n). - R. J. Mathar, Jan 25 2023
D-finite with recurrence n*a(n) -2*(4*n-1)*(4*n-3)*a(n-1)=0. - R. J. Mathar, Jan 25 2023
MAPLE
a := binomial(4*n, 2*n)*(2*n)!/(2^n*n!):
seq(a(n), n = 0..15);
CROSSREFS
Cf. A359760.
Sequence in context: A183287 A087639 A028350 * A238685 A346017 A099788
KEYWORD
nonn,easy
AUTHOR
Peter Luschny, Jan 14 2023
STATUS
approved