login
A359483
For n > 2, a(n) is the least prime p > a(n-1) such that a(n-1) + p is divisible by a(n-2); a(1) = 2, a(2) = 3.
1
2, 3, 5, 7, 13, 29, 101, 131, 677, 2467, 5657, 19013, 48871, 521519, 553643, 3618509, 14098067, 116168257, 193989217, 1200029867, 8887409417, 12713128189, 573855893333, 773735694701, 9555670385293, 30678585739159, 160434821966701, 1312137293512931, 2217428789754491, 100129280104254127
OFFSET
1,1
LINKS
EXAMPLE
a(3) = 5 because 5 is prime and a(2) + 5 = 8 is divisible by a(1) = 2.
a(4) = 7 because 7 is prime and a(3) + 7 = 12 is divisible by a(2) = 3.
a(5) = 13 because 13 is prime and a(4) + 13 = 20 is divisible by a(3) = 5.
MAPLE
p:= 2: q:= 3: R:= p, q: t:= 3: count:= 2:
while count < 40 do
t:= t + p;
if isprime(t) then
R:= R, t; count:= count+1;
p:= q; q:= t;
t:= floor(2*q/p)*p-q;
fi
od:
R;
MATHEMATICA
nmax=17; a[1]=2; a[2]=3; For[n=3, n<=nmax, n++, For[k=1, k>0, k++, If[Prime[k]>a[n-1] && Mod[a[n-1]+Prime[k], a[n-2]]==0, a[n]=Prime[k]; k=-1]]]; Array[a, nmax] (* Stefano Spezia, Apr 01 2023 *)
CROSSREFS
Sequence in context: A167134 A071905 A306317 * A067573 A103199 A054217
KEYWORD
nonn
AUTHOR
Zak Seidov and Robert Israel, Mar 31 2023
STATUS
approved