login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of Knopfmacher's limit: Limit_{x -> 1 from below} (1/(1-x)) * Product_{k>=2} (1 - x^m(k)/(k+1)), where m(k) = A060681(k) = k - k/A020639(k).
0

%I #5 Jan 02 2023 03:32:44

%S 2,2,9,2,1,7,3,6,9,5,3

%N Decimal expansion of Knopfmacher's limit: Limit_{x -> 1 from below} (1/(1-x)) * Product_{k>=2} (1 - x^m(k)/(k+1)), where m(k) = A060681(k) = k - k/A020639(k).

%C The problem of calculating this limit was proposed by Knopfmacher (1999) and its value was calculated by Lichtblau (2000).

%H Folkmar Bornemann, Dirk Laurie, Stan Wagon, and Jörg Waldvogel, <a href="https://www-m3.ma.tum.de/m3old/bornemann/challengebook/">The SIAM 100-Digit Challenge, A Study in High-Accuracy Numerical Computing</a>, SIAM, Philadelphia, 2004. See <a href="https://www-m3.ma.tum.de/m3old/bornemann/challengebook/AppendixD/AppendixD.pdf">Appendix D</a>, Problem 3, p. 282.

%H Arnold Knopfmacher, <a href="http://forums.wolfram.com/mathgroup/archive/1999/Jan/msg00023.html">A tricky limit</a>, Usenet news group post to comp.soft-sys.math.mathematica, 1999.

%H Daniel Lichtblau, <a href="https://www-m3.ma.tum.de/m3old/bornemann/challengebook/AppendixD/">The evaluation of Knopfmacher's curious limit</a>, Wolfram Research, Inc., Note of August 2000.

%H Daniel Lichtblau, <a href="https://library.wolfram.com/infocenter/Conferences/7519/">Computing Knopfmacher's Limit, or My First Foray into Computational Mathematics, Reprise</a>, Wolfram Research, Inc., 2009.

%e 2.2921736953...

%Y Cf. A020639, A060681.

%K nonn,cons,more

%O 1,1

%A _Amiram Eldar_, Jan 02 2023