login
A359360
Length times minimum part of the integer partition with Heinz number n. Least prime index of n times number of prime indices of n.
8
0, 1, 2, 2, 3, 2, 4, 3, 4, 2, 5, 3, 6, 2, 4, 4, 7, 3, 8, 3, 4, 2, 9, 4, 6, 2, 6, 3, 10, 3, 11, 5, 4, 2, 6, 4, 12, 2, 4, 4, 13, 3, 14, 3, 6, 2, 15, 5, 8, 3, 4, 3, 16, 4, 6, 4, 4, 2, 17, 4, 18, 2, 6, 6, 6, 3, 19, 3, 4, 3, 20, 5, 21, 2, 6, 3, 8, 3, 22, 5, 8, 2
OFFSET
1,3
COMMENTS
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). A prime index of n is a number m such that prime(m) divides n.
FORMULA
a(n) = A001222(n) * A055396(n).
EXAMPLE
The partition with Heinz number 7865 is (6,5,5,3), so a(7865) = 4*3 = 12.
MATHEMATICA
Table[PrimeOmega[n]*PrimePi[FactorInteger[n][[1, 1]]], {n, 100}]
PROG
(PARI) a(n) = if (n==1, 0, my(f=factor(n)); bigomega(f)*primepi(f[1, 1])); \\ Michel Marcus, Dec 28 2022
CROSSREFS
Difference of A056239 and A359358.
The opposite version is A326846.
A055396 gives minimum prime index, maximum A061395.
A112798 list prime indices, length A001222, sum A056239.
A243055 subtracts the least prime index from the greatest.
A358195 gives Heinz numbers of rows of A358172, even bisection A241916.
Sequence in context: A368572 A067399 A106737 * A323164 A363685 A339666
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 28 2022
STATUS
approved