login
A359237
Number of divisors of 5*n-3 of form 5*k+1.
10
1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 2, 1, 3, 2, 2, 1, 2, 1, 3, 1, 3, 1, 2, 1, 4, 1, 2, 2, 2, 1, 3, 1, 2, 1, 3, 2, 4, 1, 2, 1, 2, 2, 3, 1, 2, 1, 3, 1, 5, 1, 2, 1, 3, 1, 3, 2, 2, 2, 2, 1, 4, 1, 3, 1, 2, 1, 3, 1, 4, 3, 2, 1, 4, 1, 2, 1, 3, 1, 3, 2, 2, 1, 2, 2, 5, 1, 3, 1
OFFSET
1,3
COMMENTS
Also number of divisors of 5*n-3 of form 5*k+2.
LINKS
FORMULA
a(n) = A001876(5*n-3) = A001877(5*n-3).
G.f.: Sum_{k>0} x^k/(1 - x^(5*k-3)).
G.f.: Sum_{k>0} x^(2*k-1)/(1 - x^(5*k-4)).
MATHEMATICA
a[n_] := DivisorSum[5*n-3, 1 &, Mod[#, 5] == 1 &]; Array[a, 100] (* Amiram Eldar, Aug 23 2023 *)
PROG
(PARI) a(n) = sumdiv(5*n-3, d, d%5==1);
(PARI) a(n) = sumdiv(5*n-3, d, d%5==2);
(PARI) my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-x^(5*k-3))))
(PARI) my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^(2*k-1)/(1-x^(5*k-4))))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Dec 22 2022
STATUS
approved