Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #33 Feb 02 2024 11:10:45
%S 1,1,2,1,2,1,3,1,2,1,3,2,2,1,3,1,3,1,4,1,2,2,3,1,2,2,5,1,2,1,3,2,3,1,
%T 4,1,4,1,3,2,2,2,4,1,2,1,6,2,2,1,4,2,2,2,3,1,4,1,5,1,4,2,3,1,2,1,6,2,
%U 2,2,3,2,2,2,6,1,4,1,3,1,3,3,4,1,2,1,6,1,4,1
%N a(n) = tau(3*n-1)/2, where tau(n) = number of divisors of n, cf. A000005.
%C Also number of divisors of 3*n-1 of form 3*k+1 (or 3*k+2).
%H Seiichi Manyama, <a href="/A359211/b359211.txt">Table of n, a(n) for n = 1..10000</a>
%F G.f.: Sum_{k>0} x^k/(1 - x^(3*k-1)).
%F G.f.: Sum_{k>0} x^(2*k-1)/(1 - x^(3*k-2)).
%F Sum_{k=1..n} a(k) = (log(n) + 2*gamma - 1 + 2*log(3))*n/3 + O(n^(1/3)*log(n)), where gamma is Euler's constant (A001620). - _Amiram Eldar_, Dec 26 2022
%t a[n_] := DivisorSigma[0, 3*n-1]/2; Array[a, 100] (* _Amiram Eldar_, Dec 21 2022 *)
%o (PARI) a(n) = numdiv(3*n-1)/2;
%o (PARI) a(n) = sumdiv(3*n-1, d, d%3==1);
%o (PARI) a(n) = sumdiv(3*n-1, d, d%3==2);
%o (PARI) my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-x^(3*k-1))))
%o (PARI) my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^(2*k-1)/(1-x^(3*k-2))))
%Y Cf. A078703, A099774.
%Y Cf. A000005, A001620, A001817, A001822, A359212.
%K nonn,easy
%O 1,3
%A _Seiichi Manyama_, Dec 21 2022