login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A359211
a(n) = tau(3*n-1)/2, where tau(n) = number of divisors of n, cf. A000005.
9
1, 1, 2, 1, 2, 1, 3, 1, 2, 1, 3, 2, 2, 1, 3, 1, 3, 1, 4, 1, 2, 2, 3, 1, 2, 2, 5, 1, 2, 1, 3, 2, 3, 1, 4, 1, 4, 1, 3, 2, 2, 2, 4, 1, 2, 1, 6, 2, 2, 1, 4, 2, 2, 2, 3, 1, 4, 1, 5, 1, 4, 2, 3, 1, 2, 1, 6, 2, 2, 2, 3, 2, 2, 2, 6, 1, 4, 1, 3, 1, 3, 3, 4, 1, 2, 1, 6, 1, 4, 1
OFFSET
1,3
COMMENTS
Also number of divisors of 3*n-1 of form 3*k+1 (or 3*k+2).
LINKS
FORMULA
G.f.: Sum_{k>0} x^k/(1 - x^(3*k-1)).
G.f.: Sum_{k>0} x^(2*k-1)/(1 - x^(3*k-2)).
Sum_{k=1..n} a(k) = (log(n) + 2*gamma - 1 + 2*log(3))*n/3 + O(n^(1/3)*log(n)), where gamma is Euler's constant (A001620). - Amiram Eldar, Dec 26 2022
MATHEMATICA
a[n_] := DivisorSigma[0, 3*n-1]/2; Array[a, 100] (* Amiram Eldar, Dec 21 2022 *)
PROG
(PARI) a(n) = numdiv(3*n-1)/2;
(PARI) a(n) = sumdiv(3*n-1, d, d%3==1);
(PARI) a(n) = sumdiv(3*n-1, d, d%3==2);
(PARI) my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-x^(3*k-1))))
(PARI) my(N=100, x='x+O('x^N)); Vec(sum(k=1, N, x^(2*k-1)/(1-x^(3*k-2))))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Dec 21 2022
STATUS
approved