login
A359170
a(n) = 1 if n is not a multiple of 3 and has an even number of prime factors (with multiplicity), otherwise a(n) = 0.
5
1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1
OFFSET
1
FORMULA
a(n) = A011655(n) * A065043(n).
a(n) = A011655(n) - A359172(n).
a(n) = [A359378(n) > 0], where [ ] is the Iverson bracket.
MATHEMATICA
a[n_] := If[Mod[n, 3] != 0 && LiouvilleLambda[n] == 1, 1, 0]; Array[a, 100] (* Amiram Eldar, Dec 30 2022 *)
PROG
(PARI) A359170(n) = ((n%3)&&!(bigomega(n)%2));
CROSSREFS
Characteristic function of A359171.
Cf. also A359370.
Sequence in context: A224877 A178600 A373977 * A014702 A015395 A011638
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 30 2022
STATUS
approved