login
A358492
Irregular triangle read by rows: T(n,k) is one half of the number of line segments of length 1 in the k-th antidiagonal of the Dyck path described in the n-th row of A237593.
0
1, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 1, 3, 1, 1, 3, 2, 1, 1, 1, 3, 2, 1, 1, 1, 3, 3, 1, 1, 1, 1, 4, 2, 1, 1, 1, 4, 2, 2, 1, 1, 1, 1, 1, 3, 4, 1, 1, 1, 1, 3, 4, 2, 1, 1, 1, 1, 2, 4, 2, 2, 1, 1, 1, 1, 1, 3, 5, 2, 1, 1, 1, 1, 1, 1, 3, 5, 2, 1, 1, 1, 1, 1, 3, 5, 2, 2, 1, 1, 1, 1, 1, 1, 1, 5, 4, 2, 1, 1, 1, 1, 1, 1, 5, 4, 2, 2
OFFSET
1,5
EXAMPLE
Triangle begins (first 19 rows):
1;
1, 1;
1, 2;
1, 1, 2;
1, 2, 2;
1, 1, 1, 3;
1, 1, 3, 2;
1, 1, 1, 3, 2;
1, 1, 1, 3, 3;
1, 1, 1, 1, 4, 2;
1, 1, 1, 4, 2, 2;
1, 1, 1, 1, 1, 3, 4;
1, 1, 1, 1, 3, 4, 2;
1, 1, 1, 1, 2, 4, 2, 2;
1, 1, 1, 1, 1, 3, 5, 2;
1, 1, 1, 1, 1, 1, 3, 5, 2;
1, 1, 1, 1, 1, 3, 5, 2, 2;
1, 1, 1, 1, 1, 1, 1, 5, 4, 2;
1, 1, 1, 1, 1, 1, 5, 4, 2, 2;
...
For n = 10 the 10th row of A237593 is [6, 2, 1, 1, 1, 1, 2, 6]. When that row is interpreted as a symmetric Dyck path in the fourth quadrant using 20 line segments of length 1 the Dyck path looks like this:
.
|
|
|
|
|
_ _|
_|
_|
|
_ _ _ _ _ _|
.
The numbers of line segments of length 1 in the successive antidiagonals are respectively [2, 2, 2, 2, 8, 4] so the 10th row of triangle is [1, 1, 1, 1, 4, 2].
CROSSREFS
Row sums give A000027.
Row n has length A008619(n).
Column 1 gives A000012.
Sequence in context: A091591 A376361 A337633 * A227796 A109374 A079706
KEYWORD
nonn,tabf
AUTHOR
Omar E. Pol, Nov 19 2022
STATUS
approved