OFFSET
1,2
COMMENTS
a(n) is the least m such that iteration of the map x -> floor(m/x) + (m mod x), starting at some k in [1,m], produces n distinct values before repeating.
EXAMPLE
MAPLE
f:= proc(n, k) local x, S, count;
S:= {k};
x:= k;
for count from 1 do
x:= iquo(n, x) + irem(n, x);
if member(x, S) then return count fi;
S:= S union {x};
od
end proc:
V:= Vector(50): count:= 0:
for n from 1 while count < 50 do
for k from 1 to n do
v:= f(n, k);
if v <= 50 and V[v] = 0 then
V[v]:= n; count:= count+1;
fi
od od:
convert(V, list);
MATHEMATICA
f[n_, k_] := Module[{x, S, count}, S = {k}; x = k; For[count = 1, True, count++, x = Quotient[n, x] + Mod[n, x]; If[MemberQ[S, x], Return@count]; S = S~Union~{x}]];
V = Table[0, {vmax = 40}]; count = 0;
For[n = 1, count < vmax, n++, For[k = 1, k <= n, k++, v = f[n, k]; If[v <= vmax && V[[v]] == 0, Print[n]; V[[v]] = n; count++]]];
V (* Jean-François Alcover, Mar 12 2024, after Maple code *)
CROSSREFS
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Oct 27 2022
STATUS
approved