login
A357917
a(n) is the least k such that phi(k) + d(k) = A357916(n), where phi(k) = A000010(k) is Euler's totient function, and d(k) = A000005(k) is the number of divisors of k.
2
1, 2, 4, 16, 25, 81, 121, 256, 484, 1296, 529, 1024, 1600, 2116, 2401, 7744, 11664, 5041, 7225, 11236, 20164, 10201, 25600, 12769, 30976, 46656, 21025, 17161, 44944, 51076, 29929, 84100, 73984, 36481, 75076, 107584, 54289, 63001, 87025, 69169, 101761, 126025, 215296, 256036, 252004, 295936
OFFSET
1,2
COMMENTS
Numbers k such that A061468(k) = phi(k) + d(k) is prime, and no smaller number gives the same value of A061468, sorted in order of the prime values.
All terms except 2 are squares, because if k > 2, phi(k) is even, and if d(k) is odd, k must be a square.
All numbers in this sequence are elements of A225983. For an example, this excludes all numbers of the form (6*m)^2 but only if m is not divisible by 6. - Thomas Scheuerle, Oct 20 2022
LINKS
FORMULA
A061468(a(n)) = A000010(a(n)) + A000005(a(n)) = A357916(n).
EXAMPLE
a(4) = 16 because phi(16) + d(16) = 8 + 5 = 13 = A357916(4), and no smaller number than 16 works.
MAPLE
N:= 10^6:
pmax:= evalf(N/(exp(gamma)*log(log(N))+3/log(log(N))));
V:= 'V': P:= {3}: V[3]:= 2:
for k from 1 to sqrt(N) do
n:= k^2;
v:= numtheory:-phi(n)+numtheory:-tau(n);
if v <= pmax and isprime(v) and not member(v, P) then
P:= P union {v}; V[v]:= n;
fi
od:
P:= sort(convert(P, list)):
seq(V[p], p=P);
CROSSREFS
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Oct 19 2022
STATUS
approved