OFFSET
1,2
COMMENTS
The length of the side of the hexagon is determined using a triangular grid depending on the number of links, which reduces to nontrivial solutions of the Pell equation x^2 - 3y^2 = 1 for even x.
LINKS
Alexander M. Domashenko, Problem: Snake in a hexagon (in Russian).
Alexander M. Domashenko, Problem 2211: Sixth hexagon (in Russian).
FORMULA
a(n) = k(n)*sqrt((k(n)+1)^2/3 + 1)/4 for odd n,
a(n) = (k(n) + 1)*sqrt(k(n)^2/3 + 1)/4 for even n,
where k(n) = A356047(n).
Conjectures from Chai Wah Wu, Mar 13 2023: (Start)
a(n) = 208*a(n-2) - 2718*a(n-4) + 208*a(n-6) - a(n-8) for n > 8.
G.f.: x*(1+x)*(x^6+x^5+77*x^4-194*x^3+77*x^2+x+1) / ( (x^2+4*x+1) *(x^2-4*x+1) *(x^2-14*x+1) *(x^2+14*x+1) ). (End)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Alexander M. Domashenko, Oct 11 2022
STATUS
approved