login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357503
a(n) is the hafnian of the 2n X 2n symmetric matrix whose element (i,j) equals abs(i-j).
0
1, 1, 8, 174, 7360, 512720, 53245824, 7713320944, 1486382446592, 367691598791424, 113570289012090880
OFFSET
0,3
EXAMPLE
a(2) = M_{1,2}*M_{3,4} + M_{1,3}*M_{2,4} + M_{1,4}*M_{2,3} = 8 is the hafnian of
0, 1, 2, 3;
1, 0, 1, 2;
2, 1, 0, 1;
3, 2, 1, 0.
MATHEMATICA
M[i_, j_, n_]:=Part[Part[Table[Abs[r-c], {r, n}, {c, n}], i], j]; a[n_]:=Sum[Product[M[Part[PermutationList[s, 2n], 2i-1], Part[PermutationList[s, 2n], 2i], 2n], {i, n}], {s, SymmetricGroup[2n]//GroupElements}]/(n!*2^n); Array[a, 6, 0]
PROG
(PARI) tm(n) = matrix(n, n, i, j, abs(i-j));
a(n) = my(m = tm(2*n), s=0); forperm([1..2*n], p, s += prod(j=1, n, m[p[2*j-1], p[2*j]]); ); s/(n!*2^n); \\ Michel Marcus, May 02 2023
CROSSREFS
Cf. A049581, A085750 (determinant of M(n)), A085807 (permanent of M(n)), A094053 (super- and subdiagonal sums of M(n) in reversed order), A144216 (row- and column sums of M(n)), A338456.
Sequence in context: A215124 A138783 A067637 * A024109 A027464 A220966
KEYWORD
nonn,hard,more
AUTHOR
Stefano Spezia, Oct 01 2022
EXTENSIONS
a(6) from Michel Marcus, May 02 2023
a(7)-a(10) from Pontus von Brömssen, Oct 15 2023
STATUS
approved