login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A081257(n) if A081257(n) > n, otherwise a(n) = 1.
2

%I #21 Oct 15 2022 21:16:10

%S 7,13,7,31,43,19,73,13,37,19,157,61,211,241,1,307,1,127,421,463,1,79,

%T 601,31,37,757,271,67,1,331,151,1123,397,97,43,67,1483,223,547,1723,

%U 139,631,283,109,103,61,181,1,2551,379,919,409,2971,79,103,3307,163,3541,523,97,3907,109,73,613

%N a(n) = A081257(n) if A081257(n) > n, otherwise a(n) = 1.

%C All the primes in this sequence appear exactly twice.

%C The new primes encountered seem to match the terms of A256148 for n>1. _Bill McEachen_, Oct 13 2022

%F Conjecture 1: If a(n) != 1, then a(n) = a(a(n) - n - 1).

%F Conjecture 2: If n != m and a(n) = a(m), then

%F a(n) = gcd(n^2 + n + 1, m^2 + m + 1) = n + m + 1.

%e a(2) = a(a(2) - 2 - 1) = a(7 - 2 - 1) = a(4).

%e a(3) = a(9) = 3 + 9 + 1 = 13.

%e a(5) = a(25) = gcd(5^2 + 5 + 1, 25^2 + 25 + 1) = 31.

%o (Python)

%o from sympy import primefactors

%o def A357127(n): return m if (m:=max(primefactors(n*(n+1)+1))) > n else 1 # _Chai Wah Wu_, Oct 15 2022

%Y Cf. A081257, A081256, A108768, A256148.

%K nonn

%O 2,1

%A _Mohammed Bouras_, Sep 13 2022