OFFSET
1,1
COMMENTS
This equals r0 + 2/3 where r0 is the real root of y^3 - (4/3)*y - 70/27.
The other two roots are (w1*(35 + 3*sqrt(129))^(1/3) + w2*(35 - 3*sqrt(129))^(1/3 + 2)/3 = -0.1796520429... + 0.9030131458...*i, and its complex conjugate, where w1 = (-1 + sqrt(3)*i)/2 = exp(2*Pi*i/3) and w2 = (-1 - sqrt(3)*i)/2 are the complex roots of x^3 - 1.
Using hyperbolic functions these roots are (2/3)*(1 - cosh((1/3)*arccosh(35/8)) + sqrt(3)*sinh((1/3)*arccosh(35/8))*i), and its complex conjugate.
FORMULA
r = ((35 + 3*sqrt(129))^(1/3) + 4*(35 + 3*sqrt(129))^(-1/3) + 2)/3.
r = ((35 + 3*sqrt(129))^(1/3) + (35 - 3*sqrt(129))^(1/3) + 2)/3.
r = (2/3)*(2*cosh((1/3)*arccosh(35/8)) + 1).
EXAMPLE
2.359304085971776420730660392800532555346481278067672283797141251583875588...
MAPLE
h := ((35 + 3*sqrt(129))/8)^(1/3): evalf((1 + h + 1/h)*2/3, 82); # Peter Luschny, Sep 25 2022
MATHEMATICA
RealDigits[x /. FindRoot[x^3 - 2*x^2 - 2, {x, 2}, WorkingPrecision -> 120]][[1]] (* Amiram Eldar, Sep 21 2022 *)
PROG
(PARI) polrootsreal(x^3 - 2*x^2 - 2)[1] \\ Michel Marcus, Sep 23 2022
CROSSREFS
KEYWORD
AUTHOR
Wolfdieter Lang, Sep 20 2022
STATUS
approved