login
A357059
Decimal expansion of sum of squares of reciprocals of primes whose distance to the next prime is equal to 4, Sum_{j>=1} 1/A029710(j)^2.
2
0, 3, 1, 3, 2, 1, 6, 2, 0, 6, 4, 6
OFFSET
0,2
COMMENTS
Convergence table:
k A029710(k) Sum_{j=1..k} 1/A029710(j)^2
10000000 3285441223 0.031321620645456519799598611681
20000000 7067090263 0.031321620645890982910821292996
30000000 11044597393 0.031321620646019474620358985896
40000000 15153534937 0.031321620646079307404248696076
50000000 19360462153 0.031321620646113421819579063642
60000000 23647877233 0.031321620646135276227114122713
70000000 28000392817 0.031321620646150384406674037099
EXAMPLE
0.031321620646...
MATHEMATICA
aa = {}; Do[g1[2 n] = 0, {n, 1, 1000}]; Do[g2[2 n] = 0, {n, 1, 1000}]; Do[g3[2 n] = 0, {n, 1, 1000}]; Do[g4[2 n] = 0, {n, 1, 1000}]; Do[g[2 n] = 0, {n, 1, 1000}];
w1 = 3; n = 3; Monitor[While[n < 10^10, w2 = NextPrime[w1]; kk = w2 - w1;
If[kk < 2000, g[kk] = g[kk] + 1; g1[kk] = g1[kk] + N[1/w1, 1000]; g2[kk] = g2[kk] + N[1/w1^2, 1000]; g3[kk] = g3[kk] + N[1/w1^3, 1000]; g4[kk] = g4[kk] + N[1/w1^4, 1000];
If[IntegerQ[g[kk]/1000000], Print[{n, w1, kk, g[kk]}]; If[kk == 4, AppendTo[aa, {n, w1, kk, g[kk], g1[kk], g2[kk], g3[kk], g4[kk]}]]]]; w1 = w2; n++], n]; aa
KEYWORD
nonn,cons,hard,more
AUTHOR
Artur Jasinski, Sep 10 2022
STATUS
approved