login
A357016
Decimal expansion of the asymptotic density of numbers whose exponents in their prime factorization are squares (A197680).
5
6, 4, 1, 1, 1, 5, 1, 6, 1, 3, 5, 9, 3, 5, 1, 4, 3, 1, 4, 4, 7, 7, 0, 6, 1, 8, 3, 8, 4, 4, 2, 4, 4, 6, 0, 4, 1, 5, 9, 2, 0, 8, 9, 4, 0, 4, 0, 9, 2, 5, 7, 4, 6, 5, 2, 6, 8, 5, 5, 6, 0, 9, 4, 1, 0, 5, 3, 3, 0, 7, 2, 3, 9, 3, 8, 3, 2, 0, 4, 0, 9, 7, 3, 4, 5, 4, 2, 1, 1, 8, 4, 6, 7, 4, 0, 0, 6, 9, 3, 5, 6, 3, 6, 3, 5
OFFSET
0,1
COMMENTS
Equivalently, the asymptotic density of numbers with an odd number of exponential divisors (A049419).
LINKS
Vladimir Shevelev, Exponentially S-numbers, arXiv:1510.05914 [math.NT], 2015-2016.
FORMULA
Equals Product_{p prime} (1 + Sum_{k>=2} (c(k)-c(k-1))/p^k), where c(k) is the characteristic function of the squares (A010052).
EXAMPLE
0.64111516135935143144770618384424460415920894040925...
MATHEMATICA
$MaxExtraPrecision = m = 1000; em = 100; f[x_] := Log[1 + Sum[x^(e^2), {e, 2, em}] - Sum[x^(e^2 + 1), {e, 1, em}]]; c = Rest[CoefficientList[Series[f[x], {x, 0, m}], x]*Range[0, m]]; RealDigits[Exp[NSum[Indexed[c, k]*PrimeZetaP[k]/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 105][[1]]
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Amiram Eldar, Sep 09 2022
STATUS
approved