OFFSET
0,1
COMMENTS
Equivalently, the asymptotic density of numbers with an odd number of exponential divisors (A049419).
LINKS
Vladimir Shevelev, Exponentially S-numbers, arXiv:1510.05914 [math.NT], 2015-2016.
FORMULA
Equals Product_{p prime} (1 + Sum_{k>=2} (c(k)-c(k-1))/p^k), where c(k) is the characteristic function of the squares (A010052).
EXAMPLE
0.64111516135935143144770618384424460415920894040925...
MATHEMATICA
$MaxExtraPrecision = m = 1000; em = 100; f[x_] := Log[1 + Sum[x^(e^2), {e, 2, em}] - Sum[x^(e^2 + 1), {e, 1, em}]]; c = Rest[CoefficientList[Series[f[x], {x, 0, m}], x]*Range[0, m]]; RealDigits[Exp[NSum[Indexed[c, k]*PrimeZetaP[k]/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 105][[1]]
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Amiram Eldar, Sep 09 2022
STATUS
approved