login
A356932
Number of multiset partitions of integer partitions of n such that all blocks have odd size.
14
1, 1, 2, 4, 7, 13, 24, 42, 74, 130, 224, 383, 653, 1100, 1846, 3079, 5104, 8418, 13827, 22592, 36774, 59613, 96271, 154908, 248441, 397110, 632823, 1005445, 1592962, 2516905, 3966474, 6235107, 9777791, 15297678, 23880160, 37196958, 57819018, 89691934, 138862937
OFFSET
0,3
FORMULA
G.f.: 1/Product_{k>=1} (1 - x^k)^A027193(k). - Andrew Howroyd, Dec 30 2022
EXAMPLE
The a(1) = 1 through a(5) = 13 multiset partitions:
{1} {2} {3} {4} {5}
{1}{1} {111} {112} {113}
{1}{2} {1}{3} {122}
{1}{1}{1} {2}{2} {1}{4}
{1}{111} {2}{3}
{1}{1}{2} {11111}
{1}{1}{1}{1} {1}{112}
{2}{111}
{1}{1}{3}
{1}{2}{2}
{1}{1}{111}
{1}{1}{1}{2}
{1}{1}{1}{1}{1}
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
Table[Length[Select[Join@@mps/@IntegerPartitions[n], OddQ[Times@@Length/@#]&]], {n, 0, 8}]
PROG
(PARI)
P(n, y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))}
seq(n) = {my(u=Vec(P(n, 1)-P(n, -1))/2); Vec(1/prod(k=1, n, (1 - x^k + O(x*x^n))^u[k])) } \\ Andrew Howroyd, Dec 30 2022
CROSSREFS
Partitions with odd multiplicities are counted by A055922.
Odd-length multisets are counted by A000302, A027193, A058695, ranked by A026424.
Other types: A050330, A356933, A356934, A356935.
Other conditions: A001970, A006171, A007294, A089259, A107742, A356941.
A000041 counts integer partitions, strict A000009.
A001055 counts factorizations.
Sequence in context: A296689 A327543 A096236 * A002574 A069765 A090427
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 11 2022
EXTENSIONS
Terms a(13) and beyond from Andrew Howroyd, Dec 30 2022
STATUS
approved