OFFSET
0,3
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1000
FORMULA
G.f.: 1/Product_{k>=1} (1 - x^k)^A027193(k). - Andrew Howroyd, Dec 30 2022
EXAMPLE
The a(1) = 1 through a(5) = 13 multiset partitions:
{1} {2} {3} {4} {5}
{1}{1} {111} {112} {113}
{1}{2} {1}{3} {122}
{1}{1}{1} {2}{2} {1}{4}
{1}{111} {2}{3}
{1}{1}{2} {11111}
{1}{1}{1}{1} {1}{112}
{2}{111}
{1}{1}{3}
{1}{2}{2}
{1}{1}{111}
{1}{1}{1}{2}
{1}{1}{1}{1}{1}
MATHEMATICA
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
Table[Length[Select[Join@@mps/@IntegerPartitions[n], OddQ[Times@@Length/@#]&]], {n, 0, 8}]
PROG
(PARI)
P(n, y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))}
seq(n) = {my(u=Vec(P(n, 1)-P(n, -1))/2); Vec(1/prod(k=1, n, (1 - x^k + O(x*x^n))^u[k])) } \\ Andrew Howroyd, Dec 30 2022
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 11 2022
EXTENSIONS
Terms a(13) and beyond from Andrew Howroyd, Dec 30 2022
STATUS
approved