login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A356654
Triangle read by rows. T(n, k) = k! * Sum_{j=k..n} Lah(n, j) * Stirling2(j, k), where Lah(n, k) = A271703(n, k).
0
1, 0, 1, 0, 3, 2, 0, 13, 18, 6, 0, 73, 158, 108, 24, 0, 501, 1510, 1590, 720, 120, 0, 4051, 15962, 23040, 15960, 5400, 720, 0, 37633, 186270, 345786, 325920, 168000, 45360, 5040, 0, 394353, 2385182, 5469492, 6579384, 4594800, 1884960, 423360, 40320
OFFSET
0,5
COMMENTS
The same construction with Stirling1 in place of Stirling2 gives A225479, the ordered Stirling cycle numbers.
EXAMPLE
Triangle T(n, k) begins:
[0] 1;
[1] 0, 1;
[2] 0, 3, 2;
[3] 0, 13, 18, 6;
[4] 0, 73, 158, 108, 24;
[5] 0, 501, 1510, 1590, 720, 120;
[6] 0, 4051, 15962, 23040, 15960, 5400, 720;
[7] 0, 37633, 186270, 345786, 325920, 168000, 45360, 5040;
[8] 0, 394353, 2385182, 5469492, 6579384, 4594800, 1884960, 423360, 40320;
MAPLE
L := (n, k) -> `if`(n = k, 1, binomial(n-1, k-1) * n! / k!):
T := (n, k) -> k! * add(L(n, j) * Stirling2(j, k), j = k..n):
seq(seq(T(n, k), k = 0..n), n = 0..9);
MATHEMATICA
T[n_, k_] := k! * Sum[Binomial[n, j] * FactorialPower[n - 1, n - j] * StirlingS2[j, k], {j, k, n}]; Table[T[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Amiram Eldar, Sep 01 2022 *)
CROSSREFS
Cf. A271703, A048993, A225479, A000262 (column 1), A052838 (column 2), A084358 (row sums).
Sequence in context: A355360 A067346 A360282 * A282423 A111541 A371025
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Sep 01 2022
STATUS
approved